If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49v^2+56v+12=0
a = 49; b = 56; c = +12;
Δ = b2-4ac
Δ = 562-4·49·12
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-28}{2*49}=\frac{-84}{98} =-6/7 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+28}{2*49}=\frac{-28}{98} =-2/7 $
| a+(a-2)=(a+5)(a+3) | | 10(g+6)+6=3g3 | | 5+18s-30=-3+16s-2 | | 5(0.3x-0.4)=0.5 | | 1/5^x=11 | | 5x-90=150 | | 11-x/3=8 | | 2/3x-1/6x+1/3=2/3x-3/2 | | 7/8=2-1/2x | | u^2+3u-8=0 | | 11x+7x=81 | | 36x^2+34x+4=0 | | 3^(x+2)=11 | | 7x=10,000 | | 2=1.03^2x | | 15x-22=90 | | 6s+7=6+7s | | 2/7x=11/12 | | 3(x-6)+2=5×-2 | | 28—x=9 | | 2x+10-6x=4 | | 11-10=3+8(y+6) | | 3y^2+4=-6y | | 2x−5=3x+1 | | 5r-2=6+5 | | 0=4.9t^2+6t-250 | | 5h+12=3+17h | | -216=8(1-4v) | | -6x+8=33 | | ×+4÷6=7÷3+x-3÷4 | | -191=-7(8-7k)-4K | | 180-3x=90-6x |